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uo zz 
- $4 VQ = j-1 = va 

and contact takes place at the instant 

T [u”,vo] = (l/z) [- 6, - p) - I/(Y, - p)” - 4r1 

in the region W” [y, - p < 2 1/T]. In case 
k =I [4] the optimal control is v” = vcL = +I 

on the whole set W”. At positions of the one- 
dimensional analogs, which in the sense of the 

equali ties 

I X(l) I = I cr I, Ya = 0, Ya = Y(l), p = P(l) 

duplicate the positions in the three-dimensional 

Fig. 3 problem, the optimal time is strictly less than 
the optimal time in the three-dimensional prob- 

lem. This fact is explained by the absence of a lateral maneuver in the one-dimen- 

sional problem. 
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We examine the problem of the optimal control of linear systems with aftereffect 
and with quadratic performance criterion. We distinguish the class of such sys- 
tems for which the corfficients of the optimal control and of the functional to 

be minimized are computed in explicit form. 

1. Let there be given the controlled system 

2’ (t) = A (t) J (t) + B (t) x (t -15) + D (t) u (t), 0 ,( t < T (1.1) 

Here the vector x (t) belongs toan Euclidean space &, of dimension n, the control 

u (t) E R,,, the constant h > 0, and A, B, D are given matrices with piecewise- 
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continuous elements. The solution of system (1.1) is determined by the initial conditions 

z(r) = cp (‘G), -h<TfO (1.2) 

where the specified measurable bounded function Cp (‘6) E R,. 

Problem 1. Find the control u (t) minimizing the functional 

x’ (T) 11~ (7’) + s’ [d (s) N, (s) J: (s) + u’ (s) N (s) u (s)] ds (1.3) 
0 

on the trajectories z (t) of system (1. l), (1.2). Here the prime is the transpose sign, 
the elements of matrices N, (S), N (s) are piecewise-continuous functions, the matrices 
H and N, (s) are nonnegative definite, while matrix fl (s) is positive definite for all 
s E IO, T1. 

A number of papers have been devoted to the investigation of Problem 1. The results 

of [ 1, 21, in which a general approach to the solution of Problem 1 has been outlined, 
show, in particular, that in the general case it is difficult to determine explicitly the 

coefficients of the optimal control. In this connection a number of subsequent investi- 
gations were devoted to the approximation of Problem 1. The possibility was investiga- 
ted of approximating Problem 1 by a controlled system of ordinary differential equations 

[3-53. Method has been proposed for the construction of the optimal control with the 
aid of a “deformation” of system (1.1) [ 11. Another possible method for the approximate 

study of Problem 1 consists in the construction of approximations of the optimal control. 
The form of the successive Bellman approximations was established in [6] for H = 0. 
For general linear stochastic systems with aftereffect and with an arbitrary matrix H, in 

[7] there were established the formulas for the successive approximations to the optimal 
control and to the functional, the convergence of the successive approximations, the limit 
partial differential equations for the coefficients of the optimal control, as well as the 
existence conditions, in terms of the control system parameters, for the solution in these 
limit equations. 

In connection with the results in [l-7] there arises the problem of determining the 

class of controlled systems (1.1) - (1.3) for which the coefficients of the optimal con- 
trol and of the functional (1.3) corresponding to this control are computed in explicit 
form. Below, these coefficients have been computed for system (1.1) - (1.3) with 
N, (4) z 0, and next, for stochastic systems. With respect to the constraint Nt (t) = 0 
we note that when N, (t) # 0 the equations for the optimal coefficients are, in general, 

not integrable in explicit analytic form even when h = U. 

2. Everywhere in what follows it is assumed that N, (t)zO, that the coefficients 
in (1. l), (1.3) satisfy the requirements in Sect. 1, and that the elements of matrix B (t) 
are piecewise-continuously differentiable. Then (see [7]) the following results are valid. 
The optimal control us (t) in Problem 1 is 

u. (t) = - N-l (t) D’ (t) [P (t) IC (t) -t _i Q (t, t) .x (t -:- T) do] (2.1) 

and the value. corresponding to control (2.1). of functional (1.3) in which the lower limit 
of integration is t equals 0 

I(t) = ‘p’ (4 P (t) ‘P (t) 4 v’ (0 _i Q (t, ~1 ‘p (t + it) dz -!- 
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n 0 0 

$ cpp 0 + d Q’ v, .t) dTCP (4 + _j -1 cp’ (1 i- J3 R v, r, P) cp (P + t> dfap 
-h 

on the trajectories of sysrem (1.1) under the initial conditions 

L ((J) = cp (o), r -h < o < t 

In particular, the value of functional (1.3) with control (2.1) is 

I, = I (0) 

The matrices P, Q, R satisfy almost everywhere the equations 

P’ (t) + A’ (t) P (t) + P (t) A (t) + Q (t, 0) + Q' (t, 0) = P (0 D, (W (t) (2.3) 

aQ(t ~1 A’ (t) Q (t, z) + R (t, 0, z) + -%$) - + = P W DI W Q (t , z) 

aR (t T,P) an(t,r,P) _ ,; _ aR (t,f,p) 

at 8P 
= Q'@, r) D,(t) Q (t, ~1 

0 & t < T, -h & T, p < 0, D1 (t) = D (t) N-l (t) D’ (t) 

Here N-’ (t) is the matrix inverse to N (t). The boundary conditions for system (2.3) 

are P (T) = H, Q (T, z) = R (T, z, p) = 0, - h < z, p < 0 

B’ (t) P (t) - Q’ (t, --h) = 0, O<t<T (2.4) 

23 (t) Q (t, T) - R (t, - h, 7) - R’ (t, ,c, - h) = 0 

Hence, the synthesis problem of the optimal control for system (1.1) is solved if we 

construct the solution of the boundary value problem (2.3). (2.4). Note that for h > 0 
the first of the equations in system (2.3) is a Riccati matrix differential equation. Let us 
state the answer. We denote the matrix z (t) as follows: 

z (t),= exp ;, A (s) ds c 

We define a matrix Bt (t) as the solution of the Cauchy problem 

B,’ (t) = - B, (t + h) z (t + h)-l B (t + h) z (t), 0 < t <T 

B, (T) = 1, B, (t) 3 0, t>T (2.5) 

Here 1 is the unit matrix, while the matrix P, (t) is given by the relations 

PI’ (t> = PI (t) B, it) z (t)-’ D, (t) z’ (t)-%,’ (t) P, (t) 

P, (T) = z’ (T)Hz (T) (2.6) 

Then the coefficients P, Q, R of the optimal control and the optimal value of func- 

tional(l. 3) are 
P (t) = z’ (t)-lBI’ (t)P1 (t)B, (t) z (t)-’ 

Q (t, a) = - z’ (t)-lB,’ (t) P, (t) B; (t + %) z (t+ ~)-l (2.7) 

R (t, T, p) -= z’ (t 4 7)-l B, (t + z) P, (t) B; (t + P) 2 (t + P)-’ 

At the unique point t = T - h of discontinuity of the first kind of the derivative 
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Br’ (t) ; this derivative is defined by continuity from the left. The validity of these 
relations for P, Q, R can be verified by a direct substitution of them into (2.3), (2.4). 
Thus, the functions P, 0, R are determined in terms of matrices B1 (t) and P, (t). 

To compute the matrix Br (t) we should integrate system (2.5) from the point t = T 
to t = 0. Using the method of mathematical induction it is not difficult to obtain that 
the matrix T-h T-Zh T-h 

B1 (t) = I + ‘S’- f (s) ds + $ f(s) ds ( f (sl)d% + . . .t 
1 s+h 

T-jh T-jhih T-h 

$ f(s) ds $ f (~1) dsl . , . 5 f (%I) d%l 
sth sj_2+h 

for T - (j + 1) h < t < T - jh (the integer j > 1) . Here, by virtue of (2.5), 
the matrix f (t) is 

f (t) = z (t + h)-l B (t + h) 2 (t) 

It is clear that B, (t) z I for T - h 6 t < T. By the same token, B, (t) has 

been computed. 
We note further that the matrix I f cx is positive definite for any nonnegative-defi- 

nite matrix a. From this and from (2.6) we conclude that 

p, (t) = [I -+ z’ (T) HZ (T) f B, (s) z (s)-lD, (s) 2’ (s)-‘B,’ (4 ds]-1 2’ (T) Hz (T) 

3. Let us cite a method for obtaining formula (2.7). We note that the indicated me- 
thod does not depend upon the dimension of system (1.1). Therefore, we restrict our- 
selves 

with a 

to presenting it only for the simplest scalar system (1.1) of the form 

2’ (t) = z (t - h) + u (t), 0 < t < T, x (7) = cp (‘6) 
--h<T<O 

functional (1.3) equal to 

(3.1) 

(3.2) 

At first we state auxiliary assertions needed in the examination of Problem 1 for sys- 

rem (1. I) - (I. 3). Let a vector y (t) E R,, satisfy the equation 

Y’ (4 = A (t) Y (t) f f (t) + D (t) 21 (t), y (0) = yo, 0 < t G T (3.3) 

Here the matrices A and D are the same as in (1.1). while f (t) is a given measurable 
bounded function. For system (3.3) we examine Problem 1 with the functional (1.3) to 
be minimized. in which y (t) takes the place of .c (t) and ?I (t) , of u (t). A standard 
application of the dynamic programing principle in terms of the existence of Liapunov 
functions in system (3.3) shows that the following lemma is valid (cf [S]). 

Lemma. The optimal control z’, (t) in Problem 1 for system (3.3). (1.3) is 

ZJ, (t) =~ --N-l (t) D’ (t) Ir (t) y (t) -t g’(l)1 (3.4) 

The value , corresponding to the control C” (t) , of functional (1.3) is 

yo’ r (‘4 y. + it (0) y. i yo’g’ (0) + Q (0) (3.5) 
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in the last two formulas the matrix r (t), the vector g (t) cz R, , and the scalar func- 
tion g (t) are determined from the equations 

r’ (t) + A’ (t) r (t) + r (t) A (t) - r (t) DI (t) r (t) +NI (t) = 0 

r(T) =H (3.6) 

g’ (t) + f’ (t) r (t) + g (t) A (t) - g (t) & (t) r (t) = 0, r (T) = 0 

q’ (t) + g (t) f (t) + f’ (t) g’ (t) - g (t) 4 (t) g (t) = 0, q (T) = 0 

Let us now return to the determination of the functions P, Q, R in Problem 1 for 
system (3.1). (3.2). On the basis of the dynamic programing principle 

(3.7) 

min,(t), ~f~m u2 (t) dt )] 

Let us assume that the optimal control u(t) and the corresponding trajectory J: (t) of 

Eq. (3.1) has been found on the interval [O, T - hl. Then, to determine the optimal 
control u (t) on the interval [T - h, T] it is sufficient, in view of (3. l), (3.2) (3.7), 
to solve Problem 1 for the ordinary equation without aftereffect 

y’ (t) = f (t) + u (t), y (T - h) = x (T -hJ, T -h G t G 2’ 

with the functional 

y2 G”) + i u”(t) dt 
T-h 

where the known function f (t) equals J: (t - h) for T - h < t < T. On the basis 

of the lemma, relations (3.4) - (3.6) supply the solution to the latter problem. On the 
other hand, in correspondence with (2. I), (2.2). the functions P, Q, R also yield a solu- 
tion of this problem. We then equate the values of the optimal control obtained by these 

two methods. Carrying out simple but cumbersome computations, we obtain that for T - 

h<t<T, -h < 7 < 0 the function Y(t) = r (t),while Q (t, r) = 0 if t i_ 
z>T---h and 

Q (t, Z) = r (t + z + h) exp i r(s) ds, t+z<T-h 
ftT+h 

Let us transform the expression for 0 (t, T) at t + T 4 T - h. On the basis of (3.1). 
(3.6) the equation for r (t) can be written as 

r* (t) = rz (t), r (T) = 1 

Hence, the function r (t) > 0 for T - h < t < T ; by integrating, we have 

Q (t, T) = r (t + 7 + h) exp [ r’ (S) r-l (s) ds - r(t), t+z<T-h 
t+s+h 

In analogous manner, by equating to each other the values of the functional to be 
minimized, obtained by the two methods, we have 

R (t, z, p) = r (t), (T -h G t G T) 
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in the region t + z < i” -h, 2 -(m p < 2’ - I,, -1~ < ‘C, 0 < 0, while f? (1, 
‘6, p) 3 0 outside this region. Thus, the coefficients Y, 0, Ii have been determined 
on the interval [ - h -t T, Tl . Consequently, to solve Problem 1 for system (3. l), 
(3.2) it suffices to find the control which on the basis of (3.7) and of the values of 

I’ (T --II), Q (T -h, ‘G), II (T --l, ‘c, p) . supplies a minimum to the functional 

T-h T-11 

$ ut(t)dt + P(T - h) jr’(T - h) I :! \ .x(t) dt -;- 
0 .I.& 

(3.8) 

By similar reasonings, applied on [T - h, Tl, to determine the optimal control for 
T - 2h & t < T - h it suffices to find the control u (t) which, in view of (3. 8). 
supplies a minimum to the functional 

T~;u2(t)dt t- P(T - h)(r(T - h) -i_ j1.L (t)q (3.9) 

on the trajectories of system (3.1) with an arbimary initial function z (‘c), T - 3h < 
r < T - 2h. 

The comparison method used directly on 1 T - 11, 1’1 is no longer applicable since 
the last term in (3.9) is not the square of the coordinate at the last instant. This diffi- 
culty can be avoided by setting 

g(t)=z(t)(l +T-h-t) i- \I L(S)& 
‘1.:21, 

(3.10) 

From (3. l), (3.10) it follows that y (1) is determined by the equation 

y’(t) = (5 (t -h) + u (2)) (1 -t 1’ -t -IL), T - 2h < t < T -h (l3.12) 

and by virtue of (3. lo), functional (3.9) equals 
7’4 

s ?A2 (t) n’t -I- t’ (T - II) y” (T - h) 
T-Zh 

(3.1’) 

Using the lemma, let us find the solution of Problem 1 for the system (3. ll), (3.12) 
(recall that x (t - h) in (3.11) is reckoned to be a known function of time). It is also 
obvious that the minimum value of functional (3.12) on the trajectories of (3.11) coin- 
cides with the minimum value of functional (3.9) on the trajectories of system (3.1). 

We now replace the function y (t) in the value of the optimal control found by means 
of tie lemma, by the right-hand side of (3.10) and we equate the result (2.1). We then 
get that for T -%:>I/ < 1’ - h, - k < T < 0 

P (t) = (1 + T -1~ - /)“r (t) (3.13) 

Q (t, T) = r (t) (1 -I- 2’ -h -t). if t -1. a > 1’ - 2h 

Q (t, o) == (1 + T - 2h -t -T) r (t -1 ,c .) A) (3 - T -h - t)x 

f 

exp s r(s)(l-I-T----_s)2d.~, t-/-t<T--_h 
1+5+/t 
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We transform the expression for Q (t, ~6) for t + z < T - 2h, using Eq. (3.6) defin- 
ing r (t). By virtue of (3.11) this equation can be written in the form 

r’(t) =S(t)(l + T -h -t)“, r(T -h) = P(T -h) 

From this and from (3.13) we conclude that for t + T < 1’ - 2h 

Q (t, T) = (1 + T - 2h - t - t) (2 + T - II - t) r (t -I- z + h) x 

e*p s r’ (s) r (s)-l ds = (1 + T - 2h -t - .t) (1 + 7’ - h -- t) r (t) 
/+++t1 

We then equate the values of the functional to be minimized, obtained by the two 

methods (see formulas (3.5) (2.2)). Replacing in (3.5) the function y (t) by the right- 
hand side of (3.10), we get that R (t, ‘G, p) can be written in the form (2.7) for T - 
2h < t < T - h, - h < T, p < 0 . By the same token the functions I’, v, R 
have been determined on the interval [T - 2h, 1’ - hl. From the established form 
of the functions P, Q, R it follows that they admit of the representation (2.5) - (2.7) 
for T - 2h < t < T. In analogous manner, using the dynamic programing principle, 
the lemma, and a suitable change of variables of form (3. lo), we can convince ourselves 

of the validity of representation (2.5) - (2.7) on the interval T - 3h < t < T. How- 
ever, the validity of relations (2.7) on the whole interval 0 & t < 2’ can be verified 

by a direct substitution of (2.7) into (2.3) (2.4). 

4, Note 1. Using the results of [7] on the form of the partial differential equations 
for the coefficients of the optimal control in the case of general linear stochastic sys- 

tems, as well as the methods for solving them, proposed in Sect. 2, we can establish for- 

mulas for these coefficients for certain stochastic systems with several discrete time lags. 
As an example we cite the solution of the synthesis problem of the optimal control 

for the stochastic system 

5’ (t) == A (t) z (t) + B (t) I (t - h) + 1) (t) u (t) + (5 (t) E (t) (4.1) 

which is the system (1.1) subjected to the action of a Gaussian white noise f (t) of 
intensity o (t) 0’ (t), where c (t) is a given matrix with piecewise-continuous elements. 
We are required to minimize the functional T 

M (r’ (T) ZIG (‘I’) + s u’ (s) N(s) u. (s) ds) (4.2) 

0 

(where M denotes the mean) on the trajectories of (4.1),(1.2) by choosing the control 

u (t) * Similarly to Sect. 2, using [7], we obtain that the optimal control in the problem 

posed is determined by formula (2.1). while the corresponding value of functional (4.2) 
is ‘I 

’ lo + 
! 

Tr P (t) 6 (t) 5’ (t) dl 
0 

Here 1, is given by equality (2.2). matrices P, Q, N are determined by relations (2.5)- 
(2.7) Tr A is the trace of manix A. 

Note 2. Let us further indicate the rypes of partial differential equations of type 
(2.3) whose solution can be found in explicit form and which are encountered in the 
investigation of certain controlled systems with aftereffect. 

1) Matrices 1’, Q, R, specified by (2. S) - (2.7) are the solution of boundary 
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value problem (2.3 (2 4) also in the case when the last of requirements (2.4) has the 
form 

(O<t<‘, --h<‘6,(0) 

B’ (t) Q (t, 4 + Q’ (t, T) B (t) - H (t, - h, T) - R (t, z -h) -z o 

2) Let there be given the scalar piecewise-continuous functions A (t), D (t), N(t), 
the piecewise-continuously differentiable function B (t) , and the constant H > 0. We 

are required to determine the scalar functions p (t), Q (t, T), I? (t, ‘G, p),tO < t < 
T, -h ,( a, p < 0, satisfying the equations 

‘A (t) Q (4 

P’ (t) + 24 (t) P (t) + 2Q (t, 0) = P2 (t) D, (t) 

z) + R (t, 0, r) + $ (t, ‘6) - g (t, 7) = P (t) D, (t) Q (t, r> 

2A (t) zi (t, t, p) + 2 (4 T, E’) - $(h ‘t, I)) - 

$ (4 ~7 P) = Q (t, .t) Q (4 P) 4 (2) 

with boundary conditions (2.4). The solution of the problem posed is the function 

P (t) z B12 (t) PI (t), (j (t, T) -~ -B, (t) P, (t) Be1 (2 $- ‘G) 

R (t, ‘6, p) = P (t) B,’ (t + ,c) B’, (1 + p), 0 < t < T -h < ,r, p < 0 

where B, (t), P, (t) are determined from the relations 

B,’ (t) = -B, (t + h) B (t + h), B, (T) mm- 1, B, (0) = 0, s>T 

P’, (t) = - 2_4 (t) P, (t) + B12 (t) PI2 (t), 1’1 (T) pz R (4.3) 

Equations (4.3) are easily integrable in explicit form similarly to (2.5), (2.6). 
The author thanks F. L. Chernous’ko for constant attention to the work and T, L. Maiz- 

enberg for useful discussions. 

BIBLIOGRAPHY 

1. Krasovskii, N. N., On the analytic construction of an optimal control in a 
system with time lags. PMM Vol. 26, Nzl, 1962. 

2. Krasovskii, N. N,, Optimal processes in time-lag systems. In : Optimal Sys- 
tems, Statistical Methods. Proc.Second Congr.IFAC. Moscow, “Nauka”, 1965. 

3. Salukvadze, M. E., On the synthesis problem of the optimal regulator in linear 
time-lag systems subject to constantly-acting perturbations. Avtomatika i Tele- 
mekhanika. Vol.23, FP2, 1962. 

4. Repin, Iu. M. and Tret’iakov. V. E., Solution of the problem of analyti- 
cal design of re 
Vol.24, W6, 1 j 

ulators on analog computers. Avtomatika i Telemekhanika, 
63. 

5. Krasovskii, N. N., The a 
trols in a system with time P 

proximation of a problem of analytic design of con- 
ag. PMM Vol.28 N’4, 1964. 

6. Kushner. H. T. and Barnea, D.I., On the control of a linear functional- 

7. 
differential equation with quadratic cost. SIAM J. Control, Vol. 8, N’2, 1970. 

Kolmanovskii, V. B. and Maizenberg, T. L., Optimal control of sto- 
chastic systems with aftereffect. Avtomatika i Telemekhanika, Vol. 34, pl, 1973. 

8. Krasovskii, N. N., Problems of the stabilization of controllable motions. Appen- 
dix to the book : Malkin, I. G, , Theory of Stability of Motion. Moscow, “Nauka” 
1966. 

Translated by N. H. C. 


